

Recap and future plans

- Recirculating linac design appears feasible from our initial assessment
- We will develop feasibility studies in FY'02
 - Our view of key issues has been presented

Upgrade paths

· Baseline design

- 2.5 GeV
- 1 nC
- 1 mm-mrad

Increase energy

- 3.1 GeV
- 1 nC
- 1 mm-mrad

Increase charge

- 3.1 GeV
- 3 nC
- 3 mm-mrad

Upgrade paths contd.

Facility	Duration	Photons	Average Flux	Rep rate	Beamlines
	(fs)	(pulse/ 0.1% BW) -1	(sec/ 0.1% BW) -1	(Hz)	
LCLS - FEL	230	1.7x10 ¹²	2x10 ¹⁴	120	< 5
LCLS - spontaneous	230	1.3x10 ⁸	1.6x10 ¹⁰	120	< 5
SLAC SPPS	80	1x10 ⁸	3.1x10 ⁹	30	1
Femtosource	60	3.2x10 ⁶	3.2x10 ¹⁰	1x10 ⁴	~ 20
ALS undulator	200	3x10 ²	3x10 ⁶	1x10 ⁴	1

Increase energy to 3.1 GeV

-					
Femtosource	60	5.8x10 ⁶	5.8x10 ¹⁰	1x10 ⁴	~ 20

- · Additional linac module
- · Higher gradient in linac
- · Increased rf deflecting voltage

Increase bunch charge to 3 nC

Femt	tosource	60	1.7x10 ⁷	1.7x10 ¹¹	1x10 ⁴	~ 20

- · Long-term gun R&D
- · Increased rf deflecting voltage

Increase ID length to 4 m

ID length to 4 m	Femtosource	60	2.5x10 ⁷	2.5x10 ¹¹	1x10 ⁴	~ 10
	·	· ·	·	•	·	· ·

· Reduces # beamlines

May also increase rep rate above 10 kHz

Future upgrade facilities

- · High quality beam available from injector and in low energy arcs
- · May make use of recirculated beam to increase flux in future facilities

BERKELEY LAB

Summary

- Key technologies and physics issues identified
 - "Conventional" accelerator techniques to produce fs pulses no "show-stoppers"
 - R&D required to demonstrate some technology choices
 - Collaborations make good use of available resources and expertise developed elsewhere
- Cornell, TJNAF, BNL, SLAC all have light-source plans proceeding
 - Our plan is for a "niche", low-cost facility that complements other plans
 - Must work hard to remain a home institution for a future light source
 - · Need high-level active involvement at LBNL Directorate / other institution / DOE level
- Additional resources needed to obtain CDO level study
 - Need ~ 9 FTE effort from now to prepare for CDO review
 - Additional resources to be identified
 - · Commitment to 2 more years in-house funding